Exercise Sheet #9

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** (Area interpretation of the integral) Let (X, \mathcal{B}, μ) a s-finite probability space and $f: X \to [0, \infty]$ a measurable function. Let $R_f = \{(x, t) \in X \times \mathbb{R} : 0 \le t \le f(x)\}$. Prove that
 - (a) If f is measurable then $R_f \in \mathcal{B} \otimes \text{Borel}(\mathbb{R})$ and

$$\int_{X} f d\mu = (\mu \overset{\text{c-s}}{\otimes} \lambda)(R_f).$$

where λ is the Lebesgue measure.

(b) If $f: X \to \mathbb{R}$ integrable then

$$\int_X f d\mu = (\mu \overset{\text{c-s}}{\otimes} \lambda)(R_{f^+}) - (\mu \overset{\text{c-s}}{\otimes} \lambda)(R_{f^-}).$$

- **P2.** Denote λ the Lebesgue measure on \mathbb{R} . Show that if $A, B \subseteq$ are Lebesgue measurable sets such that $\lambda(A), \lambda(B) > 0$ then there is $t \in \mathbb{R}$ satisfying $\lambda(A \cap (B t)) > 0$.
- **P3.** Consider X = [0,1] equipped with the standard topology and Y = [0,1] equipped with the discrete topology. Define $\varphi : C_c(X \times Y) \to \mathbb{C}$ by $\varphi(f) = \sum_y \int_0^1 f(x,y) dx$ where the integral corresponds to the Riemman integral. Let μ be the Radon measure corresponding to φ . Is μ a product of $\lambda|_{\mathrm{Borel}([0,1])}$ and counting measure?

Hint: Consider the rectangle $\{0\} \times [0, 1]$.